

EMC TEST REPORT	
Report ID REP087776	Project ID PRJ0070567
Type of assessment: Complete Assessment	
Applicant: Rockwell Automation	Product: Husky A300
Model:	Model variant(s): • 032742 • 033029
032808	 032743 032606 032607
Specification:	
Date of issue: April 15, 2025 Ketav Jani, EMC/RF Specialist	Sanghai -
Tested by	Signature Tarsk Elkholy
Tarek Elkholy, EMC/RF Specialist Tested by	Signature Signature
Jagrut Vaishnav, EMC/RF Specialist Reviewed by	Signature

Nemko Canada Inc., a testing laboratory, is accredited by ANSI National Accreditation Board (ANAB). The tests included in this report are within the scope of this accreditation. The ANAB symbol is an official symbol of the ANSI National Accreditation Board, used under licence.

ANAB File Number: AT-3195 (Ottawa); AT-3193 (Pointe-Claire); AT-3194 (Cambridge)

Lab and test locations

Company name	Nemko Canada Inc.		
Facilities	Ottawa site:	Montréal site:	Cambridge site:
	303 River Road	292 Labrosse Avenue	1-130 Saltsman Drive
	Ottawa, Ontario	Pointe-Claire, Québec	Cambridge, Ontario
	Canada	Canada	Canada
	K1V 1H2	H9R 5L8	N3E 0B2
	Tel: +1 613 737 9680 Fax: +1 613 737 9691	Tel: +1 514 694 2684 Fax: +1 514 694 3528	Tel: +1 519 650 4811
Test site registration	CA2040 (Ottawa)		
number:	CA2041 (Montreal)		
	CA0101 (Cambridge)		
Website	www.nemko.com		

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of Contents

Table of 0	iontents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Exclusions	4
1.3	Statement of compliance	4
1.4	Test report revision history	4
Section 2	Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Model variant declaration	5
2.4	Deviations from laboratory tests procedures	5
Section 3	Test conditions	6
3.1	Power supply range	6
Section 4	Information provided by the applicant	7
4.1	Disclaimer	7
4.2	Applicant/Manufacturer	7
4.3	EUT information	7
4.4	EUT setup details	8
Section 5	Summary of test results	11
5.1	Testing period	11
5.2	Sample information	11
5.3	Equipment classification	11
5.4	Test results	12
Section 6	Terms and definitions	13
6.1	Performance criterion	13
6.2	Product classification and definitions	14
6.3	General definitions	14
Section 7	Testing data	17
7.1	Radiated disturbance	17
7.2	Mains terminal disturbance voltage	22
7.3	Harmonic current emissions	26
7.4	Voltage fluctuations and flicker	30
7.5	Electromagnetic Field	33
7.6	Electrostatic discharge (ESD)	38
7.7	Burst	43
7.8	Conducted RF	45
7.9	Voltage dips and short interruptions	48
7.10	Surge	50
7.11	Power-frequency magnetic field	52
Section 8	EUT photos	54
8.1	External photos	54

Section 1 Report summary

1.1 Test specifications

EN IEC 61326-1: 2021	Electrical equipment for measurement, control and laboratory use
	EMC requirements
	Part 1: General requirements

1.2 Exclusions

None

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Unless noted in section 1.2, all testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Test report revision history

Table 1.4-1: Test report revision history

Report ID.	Date of issue	Details of changes made to test report	
REP087776	April 15, 2025	Original report issued	

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

None

2.3 Model variant declaration

As declared by the applicant, the EUT model 032808 (Which has highest power computer & power system load) has been chosen to be representative for all other models in the model family. The model family, the variants which come with different options and the description of the variations, are as follows:

- 032742 Installation—Computer, Performance
- 032743 Installation—Graphics Card
- 033029 Installation—USB Hub, USB 3_2 gen 1, coolgear CG-G1M4PHT
- 031277 Installation—Wireless E-stop, Autec
- 032606 Subset of tested model 032808, has 2 batteries (40Ah configuration) as compared to 032608 (6 batteries 120Ah configuration)
- 032607 Subset of tested model 032808, has 4 batteries (80Ah configuration) as compared to 032608 (6 batteries 120Ah configuration)

2.4 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4 Information provided by the applicant

4.1 Disclaimer

Nemko

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

4.2 Applicant/Manufacturer

Applicant name	Rockwell Automation
Applicant address	1425 Strasburg Rd., Suite 2A, Kitchener, ON, N2R 1H2, Canada
Manufacturer name	Same as applicant
Manufacturer address	Same as applicant

4.3 EUT information

Product	Husky A300	
Model	032808	
Serial number	Prototype	
Part number	032721	
Power requirements	Battery: 25.6 V _{DC} (Configuration 1)	
	28 V_{DC} via external 100–240 V_{AC} Power adapter/charger (Configure	ration 2)
Description/theory of operation	This robot is a mobile indoor/outdoor platform that allows for th	e integration of a variety of sensors (lidars, cameras,
	etc.) for monitoring, recording, and analysing various aspects of	the environment. This robot can be navigated
	manually or autonomously, using the appropriate sensor data an	d analysis for navigation
Operational frequencies	Source description	Frequency (MHz)
	DC/DC converters (12V)	0.234
	DC/DC converter (24V)	0.221
	DC/DC converter (5V)	0.299
	STM micro-controller clock	25.00
	Ethernet PHY	25.00
	I2C bus	0.400
	SPI Clock	1.300
	CPU	1100/3600/4800
	RAM	3200
	Onboard GPU	300/1600
Hardware revision	Revision 4	
Software details	SW: 2.2; FW: 2.0-RC	

4.4 EUT setup details

4.4.1 EUT Exercise and monitoring

Methods used to exercise the EUT and all relevant ports:

As per the EUT's typical application, EUT was not able to drive motors while powered externally with AC/DC power adapter/charger. Hence EUT was tested with two configurations.

– Configuration 1:

- EUT was powered by internal battery
- EUT was programmed to engage all motors running forward at 1.5 m/s continuously
- All LEDs were operational and updating
- HMI Display was active and updating
- CPUs were fully loaded using application software
- GPU was running at 100%
- All radio modules were powered up and were continuously transmitting
- IMU sensor was active

Configuration 2:

- EUT was powered via AC/DC external power adapter/charger
- EUT was not able to drive motors while powered externally
- All LEDs were operational and updating
- HMI Display was active and updating
- CPUs was running application software
- All radio modules were powered up and were continuously transmitting
- IMU sensor was active

Configuration details:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use. Cables with mitigation features (for example, screening, tighter/more twists per length, ferrite beads) have been noted below:
- None
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local AE
 and associated cabling was representative of normal practice. Any deviations from typical arrangements have been noted below:
- None

Monitoring details:

– Configuration 1:

- Wheels of the EUT were spinning and it was monitored thorough out the testing. LEDs and HMI display was continuously updating and was
 monitored while testing. Radio modules were powered up, transmitting and the status of the transmission was monitored on the laptop
 during the testing.
- Configuration 2:
- LEDs and HMI display was continuously updating and was monitored while testing. Data topics were also monitored during the testing. Radio modules were powered up, transmitting and the status of the transmission was monitored on the laptop during the testing.

4.4.2 EUT test configuration, Configuration 1

Table 4.4-1: EUT interface ports

Description	Qty.
DC power charging port	1
USB service port	1
Ethernet service port	1

Table 4.4-2: Support equipment

Description	Brand name	Serial number, Part number, Model, Revision level
Laptop	Lenovo	MN: ThinkPad, SN: PD-OEYQOR
Wireless access point	Tp-Link	SN: 22471A5000160, MN: Archer AXE75
Remote control pushbutton transmitting unit	Autec Srl	MN : LKN, SN : GD26636, Type : LA1JH

Figure 4.4-1: Block diagram, Configuration 1

EUT test configuration, continued, Configuration 2

Table	4.4-3:	EUT	sub	assemblies
rubic		201	Jub	ussemblies

Description	Brand name	Model
AC/DC adapter	Meanwell	MN: NPB-240-24TB, SN: SC514C6368

Table 4.4-4: EUT interface ports

Description	Qty.
DC power charging port	1
USB service port	1
Ethernet service port	1

Table 4.4-5: Su	upport equipment
Brand name	Serial number, Part number, Model

Description	Brand name	Serial number, Part number, Model, Revision level
Laptop	Lenovo	MN: ThinkPad, SN: PD-OEYQOR
Wireless access point	Tp-Link	SN: 22471A5000160, MN: Archer AXE75
Remote control pushbutton transmitting unit	Autec Srl	MN : LKN, SN : GD26636, Type : LA1JH

Table 4.4-6: Inter-connection cables

Cable description	From	То	Length (m)
DC cable	EUT	AC/DC Adaptor	1.0
AC Mains Cable	AC/DC Adaptor	AC Mains	0.9

Figure 4.4-2: Block diagram, Configuration 2

Section 5 Summary of test results

5.1	Testing period			
Test start	date	March 17, 2025	Test end date	March 24, 2025
5.2	Sample informat	ion		
		_		
Receipt d	ate	March 17, 2025	Nemko sample ID number	PRJ00705670001, PRJ00705670002
5.3	Equipment class	ification		
		Table 5 2-1. Equipment	environment classification	
		Tuble 3.3-1. Equipment	environment classification	
Equipme	nt environment classifica	ition		
🗆 Equ	ipment intended to be used	in a basic electromagnetic environment		
🖾 Equ	ipment intended to be used	in an industrial electromagnetic environment		
🗆 Equ	ipment intended to be used	in a controlled electromagnetic environment		
Notes:	Basic electromagnetic el	nvironment: environment existing at locations (characterized by being supplied directly at low v	voltage from the public mains network

Notes: Basic electromagnetic environment: environment existing at locations characterized by being supplied directly at low voltage from the public mains network Industrial electromagnetic environment: environment existing at locations characterized by a separate power network, in most cases supplied from a high- or medium-voltage transformer, dedicated for the supply of installations feeding manufacturing or similar plants with one or more of the following conditions:

- frequent switching of heavy inductive or capacitive loads;

high currents and associated magnetic fields;

- presence of Industrial, Scientific and Medical (ISM) equipment (for example, welding machines)

Controlled electromagnetic environment: environment usually characterized by recognition and control of EMC threats by users of the equipment or by design of the installation

5.4 Test results

Table 5.4-1: Emissions results

Environmental phenomenon	Basic standard	Verdict
Radiated disturbance	EN 55011	Pass 1
Mains terminal disturbance voltage	EN 55011	Pass 1,3
Harmonics current emissions	EN 61000-3-2	Pass ²
Voltage fluctuations and flicker	EN 61000-3-3	Pass
Notes: ¹ Group 1 Class A		

²Harmonic classification A

³ The EUT is battery powered, the AC power line Conducted Emissions test was performed while the EUT was being charged (Configuration 2)

Table 5.4-2: Immunity results - Equipment intended to be used in an industrial electromagnetic environment

Environmental phenomenon	Basic standard	Verdict
Enclosure		
Electrostatic discharge (ESD)	EN 61000-4-2	Pass
Electromagnetic field	EN 61000-4-3	Pass
Power frequency magnetic field	EN 61000-4-8	Pass
AC power (including protective earth) ⁴		
Burst	EN 61000-4-4	Pass
Surge	EN 61000-4-5	Pass
Conducted RF	EN 61000-4-6	Pass
Voltage dips	EN 61000-4-11	Pass
Short interruptions	EN 61000-4-11	Pass
DC power (including protective earth) ¹		
Burst	EN 61000-4-4	Not applicable
Surge	EN 61000-4-5	Not applicable
Conducted RF	EN 61000-4-6	Not applicable
I/O signal/control (including functional earth) ²		
Burst	EN 61000-4-4	Not applicable
Surge	EN 61000-4-5	Not applicable
Conducted RF	EN 61000-4-6	Not applicable
I/O signal/control connected directly to mains ³		
Burst	EN 61000-4-4	Not applicable
Surge	EN 61000-4-5	Not applicable
Conducted RF	EN 61000-4-6	Not applicable
Notes: ¹ EUT is not DC powered		

¹EUT is not DC powered

² EUT does not contain any I/O signal/control lines

³ EUT does not contain any I/O signal/control lines which connect directly to mains

⁴The EUT is battery powered, the AC power line tests were performed while the EUT was being charged (Configuration 2)

Section 6 Terms and definitions

6.1 Performance criterion

Nemko

6.1.1 EN 61326-1	
General performance criteria	The general principles (performance criteria) for the evaluation of the immunity test results are the following. Permissible LOSSES OF PERFORMANCE are allowed only if specified in the test plan before testing, and clearly provided to the user in the product specification. If the PERFORMANCE LEVEL or the permissible LOSS OF PERFORMANCE is not specified, either of these may be derived from the product specification or user documentation and what the user may reasonably expect from the equipment if used as intended.
Performance criterion A	The equipment shall continue to operate as intended during and after the test. No DEGRADATION OF PERFORMANCE or LOSS OF FUNCTION is allowed below a PERFORMANCE LEVEL specified in the user documentation, when the equipment is used as intended. In the case of applying immunity tests with continuous electromagnetic phenomena, the PERFORMANCE LEVEL may be replaced by a permissible LOSS OF PERFORMANCE which shall recover, without user intervention. A permissible LOSS OF PERFORMANCE is allowed within the PERFORMANCE LEVEL only when this information is clearly provided to the end user via documentation, such as the product user manual. No change in the operating state is allowed nor is loss of data.
Performance criterion B	The equipment shall continue to operate as intended after the test. No DEGRADATION OF PERFORMANCE or LOSS OF FUNCTION is allowed below a PERFORMANCE LEVEL specified in the user documentation, when the equipment is used as intended. During the test, the equipment PERFORMANCE LEVEL may be replaced by a permissible LOSS OF PERFORMANCE if such LOSS OF PERFORMANCE is detailed in the EMC test plan. A permissible LOSS OF PERFORMANCE is allowed within the PERFORMANCE LEVEL only when this information is clearly provided to the end user via documentation, such as the product user manual. An unintended change of the operating state is allowed if self- recoverable. No loss of stored data is allowed. The following are examples of performance criterion B: EXAMPLE 1 : Data transfer is controlled or checked by parity check or by other means. In the case of malfunction, such as caused by a surge impulse, the data transfer will be repeated automatically. A reduced data transfer rate at this time is allowable degradation. EXAMPLE 2 : During testing, an analogue function value may deviate in excess of the specified limits. After the test, the deviation vanishes. EXAMPLE 3 : In the case of a monitor used only for man-machine monitoring, it is allowable that some degradation takes place, such as
Performance criterion C	 momentary display interference during the application of burst impulses. LOSS OF FUNCTION is allowed, provided the function is self-recoverable or can be restored by the operation of the controls. Recovery procedure shall be included in the user documentation. No permanent damage to the equipment is allowed. The following are examples of performance criterion C: EXAMPLE 1: In the case of an interruption in the mains longer than the specified buffer time, the power supply unit of the equipment is switched off. The switch-on may be automatic or carried out by the operator. EXAMPLE 2: After a programme interruption caused by a disturbance, the processor functions of the equipment stops at a defined position and is not left in a "crashed state". An operator's action may be necessary. EXAMPLE 3: The test results in an opening of an over-current protection equipment that can be reset by the operator.

6.2 Product classification and definitions

6.2.1 EN 55011

Nèmko

Group 1 equipment	Group 1 contains all equipment in the scope of this standard which is not classified as group 2 equipment.
Group 2 equipment	Group 2 contains all ISM RF equipment in which radio-frequency energy in the frequency range 9 kHz to 400 GHz is intentionally generated and used or only used locally, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material, for inspection/analysis purposes, or for transfer of electromagnetic energy.
Class A equipment	Equipment suitable for use in all locations other than those allocated in residential environments and those directly connected to a low voltage power supply network which supplies buildings used for domestic purposes. Warning: Class A equipment is intended for use in an industrial environment. In the documentation for the user, a statement shall be included drawing attention to the fact that there may be potential difficulties in ensuring electromagnetic compatibility in other environments, due to conducted as well as radiated disturbances.
Class B equipment	Equipment suitable for use in locations in residential environments and in establishments directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

6.3 General definitions

6.3.1 EN 61000-3-2 (Harmonic emissions)

For the purpose of harmonic current limitation, equipment is classified as follows:

Class A	 Balanced three-phase equipment;
	 Household appliances, excluding those specified as belonging to Class B, C or D;
	 Vacuum cleaners;
	 High pressure cleaners;
	 Tools, excluding portable tools;
	 Independent phase control dimmers;
	– Audio equipment;
	 Professional luminaires for stage lighting and studios.
	Equipment not specified in one of the three other classes shall be considered as Class A equipment.
Class B	– Portable tools;
	 Arc welding equipment, which is not professional equipment.
Class C	– Lighting equipment.
Class D	Equipment having a specified power according to 6.3.2 less than or equal to 600 W, of the following types:
	 Personal computers and personal computer monitors;
	 Television receivers;
	 Refrigerators and freezers having one or more variable-speed drives to control compressor motor(s).

6.3.2 EN 61000-3-3 (Voltage fluctuations and flicker)

Voltage fluctuation	Series of changes of r.m.s voltage evaluated as a single value for each successive half-period between zero-crossings of
	the source voltage.
Flicker	Impression of unsteadiness of visual sensation induced by a light stimulus whose luminance or spectral distribution
	fluctuates with time.
Short-term flicker indicator, Pst	The flicker severity evaluated over a short period (in minutes); Pst = 1 is the conventional threshold of irritability.
Long-term flicker indicator, Plt	The flicker severity evaluated over a long period (a few hours) using successive Pst values.

General definitions, continued

6.3.3 EN 61000-4-2 (Electrostatic discharge)

Electrostatic discharge; ESD	A transfer of electric charge between bodies of different electrostatic potential in proximity or through direct contact.
Contact discharge method	A method of testing, in which the electrode of the test generator is held in contact with the EUT, and the discharge
	actuated by the discharge switch within the generator.
Air discharge method	A method of testing, in which the charged electrode of the test generator is brought close to the EUT, and the
	discharge actuated by a spark to the EUT.
Direct application	Application of the discharge directly to the EUT.
Indirect application	Application of the discharge to a coupling plane in the vicinity of the EUT, and simulation of personnel discharge to
	objects, which are adjacent to the EUT.
Coupling plane	A metal sheet or plate, to which discharges are applied to simulate electrostatic discharge to objects adjacent to the
	EUT. HCP: Horizontal Coupling Plane; VCP: Vertical Coupling Plane.

6.3.4 EN 61000-4-3 (Radiated, radio-frequency, electromagnetic field)

Continuous waves (CW)	Electromagnetic waves, the successive oscillations of which are identical under steady-state conditions, which can be interrupted or modulated to convey information.
Electromagnetic (EM) wave	Radiant energy produced by the oscillation of an electric charge characterized by oscillation of the electric and magnetic fields.
Field strength	The term "field strength" is applied only to measurements made in the far field. The measurement may be of either the electric or the magnetic component of the field and may be expressed as V/m, A/m or W/m2; any one of these may be converted into the others.
Sweep	Continuous or incremental traverse over a range of frequencies.

6.3.5 EN 61000-4-4 (Electrical fast transient/burst)

Burst	Sequence of a limited number of distinct pulses or an oscillation of limited duration.
Common mode (coupling)	Simultaneous coupling to all lines versus the ground reference plane.
Ground reference plane	Flat conductive surface whose potential is used as a common reference.
Coupling clamp	Device of defined dimensions and characteristics for common mode coupling of the disturbance signal to the circuit
	under test without any galvanic connection to it.
Transient	Pertaining to or designating a phenomenon or a quantity which varies between two consecutive steady states during a
	time interval which is short compared with the time-scale of interest.

6.3.6 EN 61000-4-5 (Surge)

Surge	Transient wave of electrical current, voltage, or power propagating along a line or a circuit and characterized by a rapid increase followed by a slower decrease.
Ground (reference)	Part of the Earth considered as conductive, the electrical potential of which is conventionally taken as zero, being outside the zone of influence of any earthing (grounding) arrangement.

General definitions, continued

6.3.7 EN 61000-4-6 (Immunity to conducted disturbances, induced by radio-frequency fields)

Clamp injection	Clamp injection is obtained by means of a clamp-on "current" injecting device on the cable.
Coupling/decoupling network CDN	Electrical circuit incorporating the functions of both the coupling and decoupling networks.
Sweep	Continuous or incremental traverse over a range of frequencies.

6.3.8 EN 61000-4-8 (Power frequency magnetic field)

Induction coil	Conductor loop of defined shape and dimensions, in which flows a current, generating a magnetic field of defined constancy in its plane and in the enclosed volume.			
Immersion method	Method of application of the magnetic field to the EUT, which is placed in the centre of an induction coil.			
Proximity method	Method of application of the magnetic field to the EUT, where a small induction coil is moved along the side of the EUT			
	in order to detect particularly sensitive areas.			
Ground	A flat conductive surface whose potential is used as a common reference for the magnetic field generator and the			
	auxiliary equipment (the ground plane can be used to close the loop of the induction coil.			

6.3.9 EN 61000-4-11 (Voltage dips, short interruptions and voltage variations)

Voltage dip	A sudden reduction of the voltage at a particular point of an electricity supply system below a specified dip threshold
	followed by its recovery after a brief interval.
Short interruption	A sudden reduction of the voltage on all phases at a particular point of an electric supply system below a specified
	interruption threshold followed by its restoration after a brief interval.

Section 7 Testing data

7.1 Radiated disturbance

7.1.1 References and limits

EN 55011:2016 + A1:2017 + A11:2020 + A2:2021

Table 7.1-1: Radiated	disturbance –	Group 1	limits
-----------------------	---------------	---------	--------

Facility Class	Rated input power	Free	Measu	Measurement	
		Frequency range [IVIH2]	Distance [m]	Detector type	[dBµV/m]
OATS/SAC Class A	< 20 kVA	30–230	21	Quasi Daak	50
	Class A	ass A S 20 KVA	230–1000	5-	Quasi Peak

Notes: ¹The limits specified for the 3 m separation distance are based on a uniform reduction in the limit of 10 dB.

OATS - Open Area Test Site, SAC - Semi Anechoic Chamber

Where there is a step in the relevant limit, the lower value was applied at the transition frequency.

7.1.2 Test summary

Verdict	Pass			
Test date	March 17, 2025	Temperature	24 °C	
Tested by	Tarek Elkholy	Air pressure	983 mbar	
Test location	Cambridge	Relative humidity	41 %	

7.1.3 Notes

 The spectral plots within this section are a summation of vertical and horizontal scans. The spectral plots within this section have been corrected with all relevant transducer factors.

- Where tabular data has not been provided, no emissions were observed within 10 dB of the specified limit when measured with the appropriate detector. Additionally, where less than 6 measurements per detector have been provided, fewer than 6 emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.
- As per 3.17 of EN 55011 the EUT is considered to be small equipment. Small equipment is defined as equipment, either positioned on a table top or standing on the floor which, including its cables fits in an imaginary cylindrical test volume of 1.2 m in diameter and 1.5 m height to ground plane.

- Configuration 1 was considered as the worst-case scenario for the EUT and EUT was tested in configuration 1.

Testing data Radiated disturbance EN IEC 61326-1:2021

7.1.4 Setup details

Port under test	Enclosure Port
EUT power input during test	Battery: 25.6 V _{DC}
EUT setup configuration	Floor standing
Test facility	Semi anechoic chamber
Measuring distance	3 m
Antenna height variation	1–4 m
Turntable position	0–360°
Measurement details	A preview measurement was generated with the receiver in continuous scan or sweep mode while the EUT was
	rotated and the antenna adjusted to maximize radiated emission. Selected emissions detected were re-measured with
	the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver/spectrum analyzer settings:

Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	Peak (Preview), Quasi-peak (Final)
Trace mode	Max Hold
Measurement time	100 ms

Testing data Radiated disturbance EN IEC 61326-1:2021

Setup details, continued

Table 7.1-2: Radiated disturbance equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	FA002969	1 year	May 17, 2025
3 m EMI test chamber	TDK	SAC-3	FA003012	1 year	March 09, 2026
Flush mount turntable	SUNAR	FM2022	FA003006	-	NCR
Controller	SUNAR	SC110V	FA002976	_	NCR
Antenna mast	SUNAR	TLT2	FA003007	-	NCR
Bilog antenna (30–2000 MHz)	SUNAR	JB1	FA003009	1 year	April 24, 2025
50 Ω coax cable	Huber + Suhner	None	FA003402	1 year	July 29, 2025
50 Ω coax cable	Huber + Suhner	None	FA003047	1 year	July 29, 2025

Notes: NCR - no calibration required

All equipment related to the contribution of measurement has been included in this list. Such items include, but are not limited to, cables, attenuators, directional couplers, and pre-amps.

Table 7.1-3: Measurement uncertainty calculations based on equipment list

Measurement		U _{cispr} dB	U _{lab} dB
Radiated di	isturbance (30 MHz to 1 GHz)	6.3	5.8
Notes:	Nemko Canada Inc. has calculated measurement uncertainty and is documented in EMC/MUC/0	01 "Uncertainty in EMC me	asurements." Measurement uncertainty

was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty. The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Compliance assessment:

If U_{lab} is less than or equal to U_{cispr} then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit

- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit

If U_{lab} is greater than U_{cispr} then:

compliance is deemed to occur if no measured disturbance level, increased by (U_{lab} - U_{cispt}), exceeds the disturbance limit

- non-compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} - U_{cispr}), exceeds the disturbance limit

Table 7.1-4: Radiated disturbance test software details

Manufacturer of Software	Details
Rohde & Schwarz	EMC32, Software for EMC Measurements, Version 10.60.00

Testing data

Radiated disturbance

EN IEC 61326-1:2021

7.1.5 Test data

PRJ0070567, RE 30-1000 MHz Preview Result 1-PK+ CISPR 11 Limit - Group 1, Class A, 3 m Final_Result QPK

Note: Peak observed at 868 MHz is from the intentional transmitter of the auxiliary equipment and not related to the digital emissions.

Figure 7.1-2: Radiated disturbance spectral plot (30 to 1000 MHz)

Frequency (MHz)	Quasi-Peak field strength ^{1 and 3} (dBµV/m)	Quasi-Peak limit (dBµV/m)	Quasi-Peak margin (dB)	Correction factor ² (dB)
131.49	41.1	50.0	8.9	18.6
146.33	48.8	50.0	1.2	17.5
160.46	43.5	50.0	6.5	17.1
166.58	42.1	50.0	7.9	16.9
173.97	44.3	50.0	5.7	16.5
176.42	48.0	50.0	2.0	16.4
206.39	45.3	50.0	4.7	15.7
212.36	46.9	50.0	3.1	15.4
256.70	47.9	57.0	9.1	16.7
Notes: ¹ Field stre	ngth (dB μ V/m) = receiver/spectrum analyzer value (d	$ B\mu V $ + correction factor (dB)		

Table 7.1-5: Radiated emissions results

٠

² Correction factor = antenna factor ACF (dB) + cable loss (dB) - amplifier gain (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Sample calculation: 37.5 dBµV/m (field strength) = 21.3 dBµV (receiver reading) + 16.2 dB (Correction factor)

Testing data Radiated disturbance EN IEC 61326-1:2021

7.1.6 Setup photo

Figure 7.1-1: Radiated disturbance setup photo

Figure 7.1-2: Radiated disturbance setup photo

7.2 Mains terminal disturbance voltage

7.2.1 References and limits

EN 55011:2016 + A1:2017 + A11:2020 + A2:2021

Table 7.2-1: Mains terminal disturbance voltage limits

Frequency range [MHz]	Measurement		Limits
	Coupling device	Detector type/ bandwidth	[dBµV]
Class A group 1 (Rated input powe	r of ≤ 20 kVA)		
0.15-0.5			79
0.5–5	AMN	Quasi Peak/9 kHz	73
5–30			73
0.15-0.5			66
0.5–5	AMN	CAverage/9 kHz	60
5–30			60
A			

Notes: ¹These limits apply to equipment with a rated input power > 20 kVA and intended to be powered by a dedicated power transformer or generator, and which is not connected to Low Voltage (LV) overhead power lines. For equipment not intended to be powered by a user specific power transformer, the limits for ≤ 20 kVA apply. The manufacturer and/or supplier shall provide information on installation measures that can be used to reduce emissions from the installed equipment. In particular, it shall be indicated that this equipment is intended to be powered by a dedicated power transformer or generator and not by LV overhead power lines.

²Decreasing linearly with logarithm of frequency

³The manufacturer and/or supplier shall provide information on installation measures that can be used to reduce emissions from the installed equipment.

7.2.2 Test summary

Verdict	Pass		
Test date	March 24, 2025	Temperature	24 °C
Tested by	Ketav Jani	Air pressure	975 mbar
Test location	Cambridge	Relative humidity	41 %

7.2.3 Notes

- The spectral plots within this section have been corrected with all relevant transducer factors.

- Where tabular data has not been provided, no emissions were observed within 10 dB of the specified limit when measured with the appropriate detector. Additionally, where less than 6 measurements per detector have been provided, fewer than 6 emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.
- Equipment with a DC power port powered by a dedicated AC/DC power converter is considered to be AC mains powered equipment and tested with
 a power converter. Where the manufacturer provided the power converter, the supplied converter was used.
- EUT was tested in configuration 2.

Testing data Mains terminal disturbance voltage EN IEC 61326-1:2021

7.2.4 Setup details

Port under test – Coupling device	AC input of AC/DC adapter – Artificial Mains Network (AMN)
EUT power input during test	230 V _{AC} , 50 Hz
EUT setup configuration	Floor standing
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Selected emissions detected were
	re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview), Quasi-peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms (Preview), 160 ms (Final)

Table 7.2-2: Mains terminal disturbance voltage equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	FA002969	1 year	May 17, 2025
Two-line v-network	Rohde & Schwarz	ENV216	FA002965	1 year	November 30, 2025
50 Ω coax cable	Rohde & Schwarz	None	FA003074	1 year	July 29, 2025

Notes: NCR - no calibration required

All equipment related to the contribution of measurement has been included in this list. Such items include, but are not limited to, cables, attenuators, directional couplers, and pre-amps.

Table 7.2-3: Measurement uncertainty calculations based on equipment list

Measure	nent	U _{cispr} dB	U _{lab} dB
Conducte	d disturbance at AC mains and other port power using a V-AMN (150 kHz to 30 MHz)	3.4	3.0
Notes:	Nemko Canada Inc. has calculated measurement uncertainty and is documented in EMC/MUC/0	01 "Uncertainty in EMC me	asurements." Measurement uncertainty
	was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance a	and immunity measuring ap	paratus and methods – Part 4-2:
	Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty. The ex	pression of Uncertainty in	EMC Testing. Measurement uncertainty
	calculations assume a coverage factor of K=2 with 95% certainty.		

Compliance assessment:

If U_{lab} is less than or equal to U_{cispr} then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit
- If U_{lab} is greater than U_{cispr} then:
 - compliance is deemed to occur if no measured disturbance level, increased by (U_{lab} U_{cispr}), exceeds the disturbance limit
 - non-compliance is deemed to occur if any measured disturbance level, increased by ($U_{lab} U_{cispr}$), exceeds the disturbance limit

Table 7.2-4: Mains terminal disturbance voltage software details

Manufacturer of Software	Details
Rohde & Schwarz	EMC32, Software for EMC Measurements, Version 10.60.00

Testing data Mains terminal disturbance voltage EN IEC 61326-1:2021

7.2.5 Test data

PRJ0070567, CE 0.15-30 MHz, Phase, 230 Vac, 50 Hz

Preview Result 1-PK+

CISPR 11 Limit - Group 1, Class A, Mains (Quasi-Peak) CISPR 11 Limit - Group 1, Class A, Mains (Average)

PRJ0070567, CE 0.15-30 MHz, Neutral, 230 Vac, 50 Hz

- Preview Result 2-AVG
- Preview Result 1-PK+
- CISPR 11 Limit Group 1, Class A, Mains (Quasi-Peak) CISPR 11 Limit Group 1, Class A, Mains (Average)

Figure 7.2-2: Mains terminal disturbance voltage spectral plot on neutral line

Testing data Mains terminal disturbance voltage EN IEC 61326-1:2021

7.2.6 Setup photos

Figure 7.2-3: Mains terminal disturbance voltage setup photo

Figure 7.2-4: Mains terminal disturbance voltage setup photo

7.3 Harmonic current emissions

7.3.1 References and limits

EN 61000-3-2: 2018

Table 7.3-1: Limits for Class A equipment

Harmonic order (<i>n</i>)	Maximum permissible harmonic current (A)
	Odd harmonics
3	2.30
5	1.14
7	0.77
9	0.40
11	0.33
13	0.21
15 ≤ <i>n</i> ≤ 39	$0.15 \times 15/n$
	Even harmonics
2	1.08
4	0.43
6	0.30
8 ≤ <i>n</i> ≤ 40	0.23 × 8/n

7.3.2 Test summary

Verdict	Pass		
Test date	March 24, 2025	Temperature	24 °C
Tested by	Ketav Jani	Air pressure	975 mbar
Test location	Cambridge	Relative humidity	41 %

7.3.3 Notes

EUT was tested in configuration 2.

Testing data Harmonic current emissions EN IEC 61326-1:2021

7.3.4 Setup details

Port under test	AC input of AC/DC adapter
Measurement time	10 minutes
EUT power input during test	230 V _{AC} , 50 Hz

Table 7.3-2: Harmonic current emissions equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Harmonics and Flicker Analyzer	EMC Partner	Har 1000-1P	FA002987	1 year	November 30, 2025
AC power source	Chroma	61509	FA003020	_	NCR

Notes: NCR - no calibration required

Table 7.3-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN 61000-3-2 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN 61000-3-2, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.3-4: Harmonic current emissions test software details

Manufacturer of Software	Details
EMC Partner	HARCS, version 6.2

Testing data Harmonic current emissions EN IEC 61326-1:2021

7.3.5 Test data

Testing data Harmonic current emissions EN IEC 61326-1:2021

7.3.6 Setup photos

Figure 7.3-1: Harmonic current emissions setup photo

7.4 Voltage fluctuations and flicker

7.4.1 References

EN 61000-3-3: 2013 + A1:2019

7.4.2 Test summary

Verdict	Pass		
Test date	March 24, 2025	Temperature	24 °C
Tested by	Ketav Jani	Air pressure	975 mbar
Test location	Cambridge	Relative humidity	41 %

7.4.3 Notes

EUT was tested in configuration 2.

7.4.4 Setup details

Port under test	AC input of AC/DC adapter
Measurement time	10 minutes
EUT power input during test	230 V _{AC} , 50 Hz

Table 7.4-1: Voltage fluctuations and flicker equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Harmonics and Flicker Analyzer	EMC Partner	Har 1000-1P	FA002987	1 year	November 30, 2025
AC power source	Chroma	61509	FA003020	_	NCR

Notes: NCR - no calibration required

Table 7.4-2: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN 61000-3-3 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN 61000-3-3, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.4-3: Voltage fluctuations and flicker test software details

Manufacturer of Software	Details
EMC Partner	HARCS, version 6.2

Testing data Voltage fluctuations and flicker EN IEC 61326-1:2021

7.4.5 Test data

HAR-1000 EMC-Partner

Testing data Voltage fluctuations and flicker EN IEC 61326-1:2021

7.4.6 Setup photos

Figure 7.4-1: Voltage fluctuations and flicker setup photo

7.5 Electromagnetic Field

7.5.1 References and limits

EN 61000-4-3: 2006 + A1: 2008 + A2: 2010

Table 7.5-1: Electromagnetic Field specification

Test specification			ormance criterion	
Industrial electromagnetic environment				
10 V/m (80 – 1000 MHz), 3 V/m (1.4 – 6 GHz), 80 % AM (1 kHz) A				
Notes: None				
752 Test summary				
, isiz rest summary				
Vordict	Pass			
verdict	F 855			
Test date	March 18, 2025	Temperature	24 °C	
Tested by	Tarek Elkholy	Air pressure	979 mbar	
Test location	Cambridge	Relative humidity	40 %	
7.5.3 NOTES				

Configuration 1 was considered as the worst-case scenario for the EUT and EUT was tested in configuration 1.

Testing data

Electromagnetic Field

EN IEC 61326-1:2021

7.5.4 Setup details

Table 7.5-2: Electromagnetic Field equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA003012	1 year	March 09, 2026
Flush mount turntable	SUNAR	FM2022	FA003006	-	NCR
Controller	SUNAR	SC110V	FA002976	-	NCR
Antenna mast	SUNAR	TLT2	FA003007	-	NCR
AC Power source	Chroma	61605	FA003034	-	NCR
Horn antenna (1–18 GHz)	ETS Lindgren	3115	FA000649	1 year	April 04, 2025
Directional coupler (80–1000 MHz)	AR	DC6180A	FA002973	1 year	Jan 16, 2026
Directional coupler (0.7–6 GHz)	AR	DC725A	FA002994	1 year	Jan 16, 2026
Power sensor	Rohde & Schwarz	NRP-6A	FA002962	1 year	Jan 30, 2026
Signal generator	Rohde & Schwarz	SMB100A	FA002968	1 year	April 27, 2025
Amplifier (0.08–1 GHz, 250 W)	AR	250W1000C	FA003008	-	NCR
Amplifier (1–6 GHz, 125 W)	AR	120S1G4	FA003004	_	NCR
50 Ω coax cable	Huber + Suhner	None	FA002607	-	NCR
Biconilog Antenna (20 MHz – 2 GHz)	EMCO	3141	FA003128	_	NCR
Starprobe (0.1–6000 MHz)	AR	FI7006	FA002961	1 year	August 16, 2025
Notes: NCR - no calibration required					

NCR - no calibration required

All equipment related to the contribution of measurement has been included in this list. Such items include, but are not limited to, cables, attenuators, directional couplers, and pre-amps.

Table 7.5-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN 61000-4-3 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN 61000-4-3, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.5-4: Electromagnetic Field test software details

Manufacturer of Software	Details
Rohde & Schwarz	EMC32, Software for EMC Measurements, Version 10.60.00

Testing data Electromagnetic Field EN IEC 61326-1:2021

7.5.5 Test data

Table 7.5-5: Electromagnetic Field results

Step size increment		1%			
Dwell time ¹		1 s			
Antenna polarization		Vertical and Horizontal			
Modulation		CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave			
EUT setup configuration		Floor standing ²			
Transmit antenna		3 meters from EUT, 1.5 meters above GRP			
EUT power input during test		Battery: 25.6 V _{DC}			
EUT position facing antenna		Front side, back side, left side and right side			
Frequency range, N	Hz	Test level, V/m	Comments		
80	1000	10	No degradation		
1400	6000	3	No degradation		

Notes: ¹The dwell time at each frequency was not less than the time necessary for the EUT to be exercised and to be able to respond. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

²To maintain the field uniformity for the EUT while testing, EUT was kept on the table during the testing.

Testing data Electromagnetic Field EN IEC 61326-1:2021

7.5.6 Setup photos

Figure 7.5-1: Electromagnetic field setup photo – Below 1 GHz

Figure 7.5-2: Electromagnetic field setup photo – Below 1 GHz

Testing data Electromagnetic Field EN IEC 61326-1:2021

Setup photos, continued

Figure 7.5-3: Electromagnetic field setup photo – Above 1 GHz

Figure 7.5-4: Electromagnetic field setup photo – Above 1 GHz

7.6 Electrostatic discharge (ESD)

7.6.1 **References and limits**

EN 61000-4-2: 2009

Table 7.6-1: Electrostatic discharge (ESD) specification

Test specification	Performance criterion
Industrial electromagnetic environment	
±4 (Contact discharge), ±8 (Air discharge)	В
Notes: None	

Notes:

7.6.2 Test summary

Verdict	Pass		
Test date	March 19, 2025	Temperature	24 °C
Tested by	Ketav Jani	Air pressure	965 mbar
Test location	Cambridge	Relative humidity	44 %

7.6.3 Notes

Configuration 1 was considered as the worst-case scenario for the EUT and EUT was tested in configuration 1.

7.6.4 Setup details

Table 7.6-2: Electrostatic discharge (ESD) equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
ESD gun	TESEQ	NSG 435	FA002947	1 year	December 10, 2025

Notes: None

Table 7.6-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN 61000-4-2 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN 61000-4-2, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Testing data Electrostatic discharge (ESD) EN IEC 61326-1:2021

7.6.5 Test data

 Table 7.6-4: Electrostatic discharge (ESD) discharge results

EUT setup configuration	Floor standing			
ESD repetition rate	1 pulse per second			
Discharges	10 contact discharges and 10 air dischar	10 contact discharges and 10 air discharges at each polarity		
EUT power input during test	Battery: 25.6 V _{DC}			
Contact discharge		Test voltage (±kV)	Comments	
Please refer to "Electrostatic discharge test location points" photos of		4	No degradation	
this section		4	No degradation	
Indirect discharge		Test voltage (±kV)	Comments	
VCP (all sides)		4	No degradation	
Air discharge		Test voltage (±kV)	Comments	
Please refer to "Electrostatic discharge test location points" photos of		2 4 9	No dogradation	
		/// A		
this section		2, 4, 0		

Notes: None

Testing data Electrostatic discharge (ESD) EN IEC 61326-1:2021

Test data, continued

Figure 7.6-1: Electrostatic discharge location point's photo

Figure 7.6-2: Electrostatic discharge location point's photo

Red points = contact discharge Green points = air discharge

Testing data Electrostatic discharge (ESD) EN IEC 61326-1:2021

Test data, continued

Figure 7.6-3: Electrostatic discharge location point's photo

Figure 7.6-4: Electrostatic discharge location point's photo

Red points = contact discharge Green points = air discharge

Testing data Electrostatic discharge (ESD) EN IEC 61326-1:2021

7.6.6 Setup photo

Figure 7.6-5: Electrostatic discharge (ESD) setup photo

7.7 Burst

7.7.1 References and limits

EN 61000-4-4: 2012

Table 7.7-1: Burst specification

Test specification	Performance criterion
Industrial electromagnetic environment	
AC power (including protective earth)	
±2 kV (peak), 5/50 Tr/Th ns, 5 kHz (repetition rate)	В
Notes: None	

7.7.2 Test summary

Verdict	Pass		
Test date	March 24, 2025	Temperature	24 °C
Tested by	Ketav Jani	Air pressure	975 mbar
Test location	Cambridge	Relative humidity	41 %

7.7.3 Notes

EUT was tested in configuration 2.

7.7.4 Setup details

	Table	e 7.7-2: Burst equipment lis	t		
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Surge/EFT/Dips generator	EMC Partner	IMU3000 F5-S6-T6-D	FA002982	1 year	November 30, 2025
AC power source	Chroma	61509	FA003020	_	NCR
Notoci NCD no collibration required					

Notes: NCR - no calibration required

Table 7.7-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN 61000-4-4 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN 61000-4-4, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.7-4: Burst test software details

Manufacturer of Software	Details
EMC Partner	TEMA 3000 V 4.10.2

7.7.5 Test data

	Table 7.7-5: Burst results		
Wave shape (Tr / Td)	5/50 ns (Tr = rise time, Td= duration time)		
Burst duration	15 ms @ 5 kHz repetition frequency / 0.75 ms @ 100 kHz re	petition frequency	
Burst period	300 ms		
Test duration	60 s		
EUT power input during test	28 V_{DC} (via external 100–240 V_{AC} , 50/60 Hz power adapter)		
Test port	Repetition frequency (kHz)	Test voltage (±kV)	Comments
AC input of power adapter ^{1 and 2}	5	1, 2	See Notes ³

Notes: ¹Transient applied asynchronous (relation to power supply)

²The test voltage was applied simultaneously between a ground reference plane and all of the power supply terminals and the protective or functional earth port on the EUT cabinet

³At ± 1kV, ±2kV test level LED lights of the EUT stared flashing blue intermittently during the stress period and came back to its normal state once the stress period got over. EUT satisfies the performance criteria B requirement of the standard.

7.7.6 Setup photos

Figure 7.7-1: Burst setup photo – Power

7.8 Conducted RF

7.8.1 References and limits

EN 61000-4-6: 2014

Table 7.8-1: Conducted RF specification

Test specification	Performance criterion
Industrial electromagnetic environment	
AC power (including protective earth)	
0.15–80 MHz, 3 V (unmodulated), 80 % AM (1 kHz)	А
Notes: None	

7.8.2 Test summary

Verdict	Pass		
Test date	March 24, 2025	Temperature	24 °C
Tested by	Ketav Jani	Air pressure	975 mbar
Test location	Cambridge	Relative humidity	41 %

7.8.3 Notes

EUT was tested in configuration 2.

Section 7Testing dataTest nameConducted RFSpecificationEN IEC 61326-1:2021

7.8.4 Setup details

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Amplifier (0.01–400 MHz, 100 W)	AR	100A400A	FA002972	-	NCR
Signal generator	Rohde & Schwarz	SMB100A	FA002968	1 year	April 27, 2025
6 dB attenuator	AR	64671	FA002975	1 year	Jan 16, 2026
Directional coupler (0.01–400 MHz)	AR	DC3400A	FA002974	1 year	Jan 16, 2026
Power sensor	Rohde & Schwarz	NRP-6A	FA002963	1 year	Feb 24, 2026
50 Ω coax cable	Huber + Suhner	None	FA002014	_	NCR
CDN-M2/M3	TESEQ	CDN M016	FA002949	1 year	November 30, 2024
CDN-M2/M3	TESEQ	CDN M016	FA002950	1 year	November 30, 2024

Notes: NCR - no calibration required

All equipment related to the contribution of measurement has been included in this list. Such items include, but are not limited to, cables, attenuators, directional couplers, and pre-amps.

Table 7.8-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN 61000-4-6 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN 61000-4-6, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.8-4: Conducted RF test software details

Manufacturer of Software	Details
Rohde & Schwarz	EMC32, Software for EMC Measurements, Version 10.60.00

7.8.5 Test data

Table 7.8-5: Conducted RF results

Frequency range	0.15–80 MHz			
Step size increment	1%	1%		
Dwell time ¹	1 s			
Signal level	3 V _{RMS}	3 V _{RMS}		
Modulation	CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave			
EUT power input during test	28 V_{DC} (via external 100–240 V_{AC} , 50/60 H	lz power adapter)		
Ports investigated	Coupling method	50 Ω termination point	Comments	
AC input of power adapter	CDN-M3 (EUT)	CDN-M3 (AE)	No degradation	

Notes: ¹The dwell time at each frequency was not less than the time necessary for the EUT to be exercised and to be able to respond. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

Testing data Conducted RF EN IEC 61326-1:2021

7.8.6 Setup photos

Figure 7.8-1: Conducted RF setup photo – Power

7.9 Voltage dips and short interruptions

7.9.1 **References and limits**

EN IEC 61000-4-11: 2020

Table 7.9-1: Voltage dips and short interruptions specification

Test specification Performance crit	
Industrial electromagnetic environment	
Voltage dip: 0 % during 1 cycle	В
Voltage dip: 40 % during 10/12 cycles	С
Voltage dip: 70 % during 25/30 cycles C	
Short Interruption: 0 % during 250/300 cycles	C
Notes: – Changes to occur at 0 degree crossover point of the voltage waveform.	

Changes to occur at 0 degree crossover point of the voltage waveform.

For example, "25/30 cycles" means "25 cycles for 50 Hz test" or "30 cycles for 60 Hz test".

7.9.2 Test summary

Verdict	Pass		
Test date	March 24, 2025	Temperature	24 °C
Tested by	Ketav Jani	Air pressure	975 mbar
Test location	Cambridge	Relative humidity	41 %

7.9.3 Notes

EUT was tested in configuration 2

7.9.4 Setup details

Table 7.9-2: Voltage dips and short interruptions equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Surge/EFT/Dips generator	EMC Partner	IMU3000 F5-S6-T6-D	FA002982	1 year	November 30, 2025
Dips voltage variac	EMC Partner	VAR-EXt1000	FA002984	1 year	November 30, 2025
AC power source	Chroma	61509	FA003020	-	NCR

NCR - no calibration required Notes:

Table 7.9-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN/IEC 61000-4-11 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN/IEC 61000-4-11, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.9-4: Voltage dips and short interruptions test software details

Manufacturer of Software	Details
EMC Partner	TEMA 3000 V 4.8.3

7.9.5 Test data

Table 7.9-5: Voltage dips results					
Variation/dip repetition Sequence of three dips/interruptions with an interval of 10 seconds between each test					
EUT power input during test	230 V _{AC} , 50 Hz	:30 V _{AC} , 50 Hz			
Test port		Residual voltage (%)	Cycles	Comments	
		0	1	No degradation	
AC input of power adapter @ 50 Hz		40	10	No degradation	
		70	25	No degradation	
Notes: Changes occurred at the 0 crossings of the voltage waveform					

Changes occurred at the 0 crossings of the voltage waveform The EUT peak inrush current was less than 70% of the peak drive capability of the generator

Table 7.9-6: Short interruptions results			
Variation/dip repetition	Sequence of three dips/interruptions with an interval o	f 10 seconds between ea	ch test
EUT power input during test	230 V _{AC} , 50 Hz		
Test port	Residual voltage (%)	Cycles	Comments
AC input of power adapter @ 50 H	z 0	250	No degradation

Changes occurred at the 0 crossings of the voltage waveform Notes:

The EUT peak inrush current was less than 70% of the peak drive capability of the generator

7.9.6 Setup photo

Figure 7.9-1: Voltage dips and short interruptions setup photo

 Section 7
 Testing data

 Test name
 Surge

 Specification
 EN IEC 61326-1:2021

7.10 Surge

7.10.1 References and limits

EN 61000-4-5: 2014 + A1:2017

Table 7.10-1: Surge specification

Test specification	Performance criterion
Industrial electromagnetic environment	
AC power (including protective earth)	
± 1 kV Line to Line, ± 2 kV Line to Ground, 1.2/50 Tr/Th μs	В
Notes: None	

7.10.2 Test summary

Verdict	Pass		
Test date	March 24, 2025	Temperature	24 °C
Tested by	Ketav Jani	Air pressure	975 mbar
Test location	Cambridge	Relative humidity	41 %

7.10.3 Notes

EUT was tested in configuration 2

7.10.4 Setup details

Table 7.10-2: Surge equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Surge/EFT/Dips generator	EMC Partner	IMU3000 F5-S6-T6-D	FA002982	1 year	November 30, 2025
AC power source	Chroma	61509	FA003020	_	NCR
Notosu NCD no colibration required					

Notes: NCR - no calibration required

Table 7.10-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN 61000-4-5 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN 61000-4-5, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.10-4: Surge test software details

Manufacturer of Software	Details
EMC Partner	TEMA3000 v4.10.2

Section 7 Testing data Test name Surge Specification EN IEC 61326-1:2021

7.10.5 Test data

Open circuit voltage (T ₁ / T ₂)	1.2/50 μs (T ₁ = front time, T ₂ = time to half value)			
Short circuit curent (T ₁ / T ₂)	8/20 μs (T ₁ = front time, T ₂ = time to half value)			
Surge pulse interval	60 s			
Number of pulses	5 positive and 5 negative			
EUT power input during test	28 V_{DC} (via external 100–240 V_{AC} , 50/60 Hz power adapter)			
1 1 0				
Test port	Coupling	Test voltage (±kV)	Comments	
Test port	Coupling Phase to Neutral	Test voltage (±kV)	Comments No degradation	
Test port AC input of power adapter	Coupling Phase to Neutral Phase to ground	Test voltage (±kV) 1 1, 2	Comments No degradation No degradation	
Test port AC input of power adapter	Coupling Phase to Neutral Phase to ground Neutral to ground	Test voltage (±kV) 1 1, 2 1, 2 1, 2	Comments No degradation No degradation No degradation	

Phase to neutral coupling: Surge applied with generator output impedance set to 2 $\boldsymbol{\Omega}$ -

_ Phase/neutral to ground coupling: Surge applied with generator output impedance set to 12 $\boldsymbol{\Omega}$

_ Surge applied synchronous (relation to power supply): 0, 90, 180, and 270°

7.10.6 Setup photos

Figure 7.10-1: Surge setup photo - Power

7.11 Power-frequency magnetic field

7.11.1 References and limits

EN 61000-4-8: 2010

Table 7.11-1: Power-frequency magnetic field specification

Test specification	Performance criterion
Industrial electromagnetic environment	
30 A/m (50 Hz)	А
Notes: Only to magnetically sensitive equipment.	

7.11.2 Test summary

Verdict	Pass		
Test date	March 18, 2025	Temperature	24 °C
Tested by	Ketav Jani	Air pressure	975 mbar
Test location	Cambridge	Relative humidity	41 %

7.11.3 Notes

Configuration 1 was considered as the worst-case scenario for the EUT and EUT was tested in configuration 1.

7.11.4 Setup details

Table 7.11-2: Power-frequency magnetic field equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Magnetic current loop	EMC Partner	MF1000-1	FA003038	3 year	June 21 2025
Magnetic Field generator	EMC Partner	IMU3000 F5-S6-T6-D	FA002982	1 year	November 30, 2025
Dips voltage variac	EMC Partner	VAR-EXt1000	FA002984	1 year	November 30, 2025
AC source	Chroma	61509	FA003020	-	NCR
Triple axis pro EMF meter	Latnex	MG-2000T	FA003409	-	NCR

Notes: NCR - no calibration required

Table 7.11-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN 61000-4-8 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN 61000-4-8, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.11-4: Power-frequency magnetic field test software details

Manufacturer of Software	Details
EMC Partner	TEMA3000 v4.10.2

7.11.5 Test data

Table 7.11-5: Power-freauencv	maanetic field results
	inagine ne jiena i counto

Assessment time	5 minutes at each loop polarization		
EUT power input during test	Battery:25.6 V _{DC}		
Loop polarization	Signal frequency, Hz	Magnetic field test level, A/m	Comments
Vertical (aligned with AC power lin	e) 50	30	No degradation
Vertical (perpendicular to AC powe	er line) 50	30	No degradation
Horizontal	50	30	No degradation
Notes: The ambient magnetic field of the test laboratory at the time of testing was measured to be 0.008 A/m , > 20 dB below the selected test level.			

EUT is tested using the proximity method of susceptibility to magnetic field.

7.11.6 Setup photo

Figure 7.11-1: Power-frequency magnetic field setup photo

Figure 7.11-2: Power-frequency magnetic field setup photo

Section 8 EUT photos

8.1 External photos

Figure 8.1-1: Front view photo

Figure 8.1-2: Rear view photo

Figure 8.1-3: Side view photo

Figure 8.1-4: Side view photo

Figure 8.1-5: Top view photo

Figure 8.1-6: Front view photo

Figure 8.1-7: Rear view photo

Figure 8.1-8: Side view photo

Figure 8.1-9: Side view photo

Figure 8.1-10: AC/DC adapter view photo

End of the test report